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Abstract 18 

Next generation sequencing (NGS) technologies are revolutionizing the fields of biology and 19 

medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and 20 

barcodes it is possible to sequence targeted genomic regions with deep coverage for hundreds, even 21 

thousands of individuals in a single experiment. This is extremely valuable for genotyping gene 22 

families in which locus-specific primers cannot be designed, such as the major histocompatibility 23 

complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates 24 

of NGS technologies and other error sources such as polymerase amplification or formation of 25 

chimeras. Correcting these errors requires extensive bioinformatics post-processing of NGS data. 26 

Amplicon Sequence Assignment tool (AmpliSAS) is a web server analysis tool that performs 27 

analysis of AS results in a simple and efficient way, offering customization options for advanced 28 

users. AmpliSAS is designed as a three-step pipeline: i) read de-multiplexing, ii) unique sequence 29 

clustering, iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in Excel 30 

spreadsheet format, making them easy to interpret. AmpliSAS performance has been successfully 31 

benchmarked against previously published genotyped MHC data sets obtained with various NGS 32 

technologies. 33 

Availability: AmpliSAS online web server is available at: 34 

https://sites.google.com/site/evobiolab/software/amplisas 35 

Contact: bioquimicas@yahoo.es  36 

https://sites.google.com/site/evobiolab/software/amplisas
file://vboxsrv/alvaro/Dropbox/Research/articles/ampliSAS/bioquimicas@yahoo.es
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Background 37 

Few years after the outbreak of NGS technologies in science, these have reached a stage that makes 38 

them available and affordable for most biology laboratories around the world (Glenn 2011; Liu et 39 

al. 2012; Quail et al. 2012; Loman et al. 2012). Along with classical NGS approaches, such as 40 

whole genome, exome or transcriptome sequencing (Abecasis et al. 2010; Ozsolak & Milos 2011; 41 

Rabbani et al. 2014), there are many adaptations of these techniques that obtain results which would 42 

be very expensive and laborious to obtain in other ways. One of these is amplicon sequencing (AS) 43 

(Bybee et al. 2011), which consists of high-throughput sequencing of amplification products from 44 

multiple PCRs. AS is now a widely used technique in metagenomics, ecology, population genetics 45 

and evolutionary biology (Sogin et al. 2006; Swenson 2012; Di Bella et al. 2013; Joly et al. 2014).  46 

One of the most useful cases of AS is for typing highly polymorphic, multi-gene families, 47 

such as genes of Major Histocompatibility Complex (MHC) or olfactory receptor genes (Babik et 48 

al. 2009; Bentley et al. 2009; Dehara et al. 2012). Loci belonging to these families often share 49 

conserved parts of sequences in which primers can be located. However, as a consequence, alleles 50 

from many loci are co-amplified, and direct or indirect identification of sequences of particular 51 

alleles with traditional techniques, such as sequencing, SSCP or RSCA (reviewed in Babik 2010) 52 

may become unfeasible in species with high number of loci.  53 

MHC class I and class II gene families, which encode cell surface receptors that present 54 

antigens to immune cells, are the most polymorphic genes among vertebrates (reviewed in Sommer 55 

2005; Piertney and Oliver 2006), and have become a paradigm for the study of balancing selection 56 

(Garrigan & Hedrick 2003; Spurgin & Richardson 2010). They are also central to the study of the 57 

host-parasite coevolution, mate choice and kin recognition (Penn 2002; Milinski 2006).  58 

The number of MHC genes can differ within and among species (Kelley et al. 2005), but 59 

many species show gene duplications and copy-number variation, which makes application of 60 



4 

 

traditional methods infeasible. Hence, high-throughput sequencing is becoming a method of choice 61 

for the study of multigene MHC family (Babik et al. 2009; Radwan et al. 2012; Sepil et al. 2012; 62 

Lighten et al. 2014b). A typical experiment consists of amplifying individual samples using 63 

barcoded primers, then pooling individual samples together for sequencing. The sequences are then 64 

de-multiplexed and genotypes of individuals determined.  65 

However, relatively high error rates associated with AS, stemming both from intrinsic 66 

sequencing error rate of high-throughput technologies and PCR errors, such as chimera formation, 67 

makes genotyping using NGS challenging. For example, homopolymer regions are a major issue for 68 

pyrosequencing and ion semiconductor technologies (454 or Ion Torrent), where erroneous indels 69 

are introduced in high rates, whereas technology based on reversible dye-terminators (Illumina) 70 

suffers from a high number of not necessarily random substitutions (Table S2) (Gilles et al. 2011; 71 

Vandenbroucke et al. 2011; Liu et al. 2012; Loman et al. 2012; Bragg et al. 2013; Ross et al. 2013).  72 

Various approaches to deal with AS errors have been used (Lighten et al. 2014a), which rely 73 

on the assumption that erroneous sequences (henceforth ‘artefacts’) are less common than correct 74 

ones (henceforth ‘true sequences’, TS). Artefacts are either sieved out or clustered with TS on the 75 

basis of similarity to the more common variants in the amplicon (e.g. Promerová et al. 2013; Kloch 76 

et al. 2012), in conjunction with other information such as the presence of a variant in a replicate 77 

amplicon and other samples (Sommer et al. 2013), relative frequency compared to a dominant 78 

variant in a cluster (Stutz & Bolnick 2014), or expected distributions of TS frequencies (Lighten et 79 

al. 2014b) (See Table S1 for a summary and comparison of available AS genotyping methods).  80 

In a recent review, Lighten et al. (2014a) advocated a model-based approach that may not be 81 

optimal when allele amplification efficiencies are uneven (Sommer et al. 2013). The method of 82 

choice may thus depend on the particular study system and platform used, and genotyping 83 

parameters may need to be optimized on a case-by-case basis (Herdegen et al. 2014; Stutz & 84 
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Bolnick 2014). This is made difficult by the lack of customizable and easy-to-use tools for 85 

producing either genotypes or outputs that could be used for further downstream genotyping (Table 86 

S1). For example jMHC software (Stuglik et al. 2011) can be used to initially de-multiplex reads 87 

into amplicons, but it does not perform clustering or any downstream analysis.  88 

Sequence clustering is important when error-distribution is non-random, e.g. when indels 89 

occur in some sequences more often than in others (Gilles et al. 2011; Bragg et al. 2013). Just 90 

removing sequences with indels, as is commonly done during MHC typing protocols, may change 91 

the frequency estimations of alleles within an amplicon, thus affecting genotyping based on 92 

threshold frequencies or expected frequency-distributions. Furthermore, simple clustering based on 93 

similarity may overlook TSs which are similar to other TSs within the same amplicon. To help 94 

address this, Stutz & Bolnick (2014) proposed a more complex Stepwise Threshold Clustering 95 

(STC) algorithm which allows flexible clustering taking into account relative abundance of a 96 

variant within a cluster, in addition to sequence similarity. 97 

Here we present Amplicon Sequence Assignment tool (AmpliSAS), a publicly available web 98 

server that performs all the necessary steps for AS genotyping in a fully automatic way. It extends 99 

jMHC functionality by including STC-like clustering algorithm and sequence filtering capabilities, 100 

but also offers advanced processing options for customizing genotyping for special genes or 101 

samples. AmpliSAS returns results in Excel spreadsheet format, making them easy to interpret. 102 

Genotyping can be optimized by setting system-specific clustering and filtering parameters, or 103 

clustering results can be easily used for further downstream analysis, such as DOC genotyping 104 

algorithm (Lighten et al. 2014b). While AmpliSAS has been designed specifically for multilocus 105 

genotyping, it can be also used for other AS purposes, such as organism identification in 106 

metagenomics, environmental barcoding (barcodes have a different definition in this case, they are 107 

individual amplicon sequences that allow species identification), or detecting allelic mutations. 108 
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AmpliSAS is accompanied by AmpliCheck module, which allows preliminary exploration of the 109 

data to help in setting optimal parameters for AmpliSAS.  110 

We have benchmarked AmpliSAS performance on three datasets. First, to prove the 111 

accuracy of genotype assignments, we used class I HLA-A and HLA-B loci in five human cell lines 112 

sequenced with Illumina MiSeq paired-end 2×250 cycles, for which allele sequences were assigned 113 

based on Sanger sequencing in two independent laboratories (Bai et al. 2014). Second, to assess the 114 

quality of our clustering algorithm, we compared AmpliSAS results with those generated by STC 115 

method in the original dataset of Stutz & Bolnick (2014). This consists of 301 samples from the 116 

non-model organism the threespine stickleback (Gasterosteus aculeatus), sequenced with 454 GS 117 

FLX Titanium technology. Finally, we applied AmpliSAS to 13 guppy (Poecilia reticulata) samples 118 

for which inter-platform (Ion Torrent PGM 318 chip and Illumina MiSeq) comparison was available 119 

(Herdegen et al. 2014). This dataset was used to compare directly the results of genotyping that did 120 

not use clustering against that utilizing the AmpliSAS clustering algorithm, for both sequencing 121 

platforms.  122 

  123 
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Term Definition 

Sample 
A single genetic material to be sequenced (usually from an individual of the study 
organism). 

Barcode / Molecular Identifier Tag (MID) 
A unique short DNA sequence that identifies unambiguously a sample. Barcodes are 
usually ligated after PCR amplification or directly included in one or both primers. 

Marker A DNA region to be amplified.  

Read 
Each individual sequence (non-unique) retrieved by a sequencing run. A sequence run 
will retrieve thousands/millions of reads. 

Amplicon A set of reads derived from a single PCR (one marker, one sample). 

Amplicon depth Number of reads per amplicon 

Variant/Sequence 
Unique sequence retrieved by a sequencing run. Usually multiple reads correspond to a 
sequence/variant. 

Sequence Depth/Coverage Number of reads per sequence/variant. 

Sequence Frequency or 
Per Amplicon Frequency (PAF) 

Number of reads per sequence divided by the total number of reads in a single amplicon. 

True Sequence/Allele (TS/TA) Sequence that matches a real allele or real sequence in the sample genome. 

Artefact/Artefactual sequence 
Variant resulting from experimental/technical errors: sequencing errors, polymerase 
errors, non-specific amplifications (paralogues, pseudogenes), contaminants, etc. 

Cluster 
A set of variants that fulfil the clustering thresholds and are grouped together (similar 
sequences). Ideally it integrates a real sequence and all its artefacts. 

Dominant sequence 
Sequence that represents the cluster real sequence. Usually it is a high depth sequence 
that passes length constrains and is the consensus of the other cluster members. 

Subdominant sequence 
Sequence with an unusually high frequency with respect to the dominant sequence in a 
cluster. Such sequences are frequently a TS/TA and should form a new cluster if proved 
to be true. 

Consensus sequence 
Sequence created by taking the most frequent nucleotide in each aligned position of the 
cluster members. 

Allele assignment Identification of a TS/TA in a particular amplicon. 

Dropped allele True allele that is not present in the genotyping results. 

Missing allele True allele that is not present in the amplicon reads. 

Chimera 
Variant containing partial sequences from two or more true sequences. Chimeras from more 
than two sequences are very rare. 

Singleton Variant with only 1 read depth. 

Table 1. Definitions of commonly used terms in amplicon sequencing and genotyping studies. They 

can slightly differ from some authors. 

 124 

Methods 125 

AmpliSAS algorithm 126 

AmpliSAS workflow is divided into three main steps: i) sequence de-multiplexing, ii) clustering, 127 

iii) filtering (Figure 1A; a more detailed workflow is shown in Figure S1). Definitions for common 128 

technical terms are listed in Table 1.  129 

1. Sequence de-multiplexing 130 
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This step is mandatory (Figure 1A), as it classifies reads into amplicons, and searches for matching 131 

of primers and barcodes. Other open source tools like jMHC (Stuglik et al. 2011) or SESAME 132 

(Meglécz et al. 2011) and proprietary software like GS Amplicon Variant Analyzer (Roche) perform 133 

the same function. In AmpliSAS, it is possible to include multiple pairs of primers in one single 134 

analysis, allowing multiple genes to be analysed without having to run the program several times. 135 

As in jMHC, previously defined allele names and sequences can be given as input to assign the 136 

same names to de-multiplexed sequences. By default, AmpliSAS will name sequences according to 137 

the marker name followed by an auto-increment number in descending coverage order (e.g. 138 

HLA_A2-00006). A minimum number of reads can be specified to exclude low coverage amplicons 139 

from further analysis, which can be adjusted according to the expected number of alleles and other 140 

parameters such as  amplification efficiency (Sommer et al. 2013). 141 

2. Sequence clustering 142 

The important feature of AmpliSAS compared to jMHC is the implementation of a sequence 143 

clustering stage between the de-multiplexing and filtering steps (Figure 1A). We followed the STC 144 

algorithm principle of Stutz & Bolnick (2014), but simplified it to increase its speed and provide a 145 

number of additional options to help the user customize the analysis to their study system and data 146 

set. This step is crucial in overcoming the main problems associated with high error rates inherent 147 

to high-throughput techniques. These are: i) discarding sequences with wrong length (due to indels), 148 

which results in a loss of data and may bias variant frequency estimation if some variants (e.g. 149 

homopolymer-rich) are more prone to indel-type error than others; ii) artefacts that have frequencies 150 

as high as those of real alleles, due to non-random errors; and iii) two true alleles that are more 151 

similar to each other than to their artefacts (see Table 2). AmpliSAS clustering method processes 152 

de-multiplexed sequences, amplicon by amplicon (Figure 1B).  153 

AmpliSAS first orders all sequences in the amplicon by depth, and takes the first sequence 154 
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(highest depth). The user can enable an option that checks whether this sequence matches an 155 

expected PCR product length or if it complies with a given reading frame (i.e. discrete 3bp 156 

deviations from expected length are allowed; see Table 3 for a description of the available clustering 157 

parameters). If the sequence complies with the length conditions (or if no conditions are specified), 158 

the sequence is labelled as 'dominant sequence' and is then used as the core of a new cluster. Each 159 

remaining amplicon sequence (including wrong length ones) is compared with the dominant one, 160 

and its sequencing/PCR errors (artefacts) are identified based on user-defined criteria (thresholds 161 

for the numbers of substitutions and non-homopolymer indels; Table 3). Note that due to the very 162 

frequent homopolymer errors of techniques like Ion Torrent or 454, indels within homopolymer 163 

regions are clustered by default; see Table S2 for NGS error rate estimations in different studies. 164 

Errors are detected by performing high accuracy pairwise global alignments between the dominant 165 

sequence and the others using NEEDLE and NEEDLEALL utilities from EMBOSS package (Rice 166 

et al. 2000). Instead of sequencing error rates, a more general ‘identity threshold’, can be optionally 167 

defined (Table 3). After that, a single cluster is defined as the dominant sequence plus all its 168 

artefacts. 169 

The user can define a threshold frequency relative to the dominant sequence (Table 3), the 170 

exceeding of which will result in excluding the ‘subdominant sequence’ from the cluster and the 171 

formation of a new cluster, even if the sequence is very similar to the dominant (problem case iii). 172 

To form a new cluster, the subdominant sequence must be of correct length (± 3bp if such option is 173 

selected) and free of frame-shifting indels. Sequences with ‘compensatory indels’ will not form a 174 

new cluster when, indels are introduced as a result of a sequencing error, preserving the correct 175 

length of a sequence but altering the reading frame. However, potential compensatory indels are 176 

ignored by AmpliSAS when they are present at a stretch of 9bp, as, in our experience, such cases 177 

are often misalignments of two very similar true alleles rather than sequencing errors. 178 
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Finally, all cluster members are merged to create a 'consensus sequence', taking the most 179 

frequent nucleotide in each aligned position. If the consensus sequence differs from the dominant 180 

one, has not been clustered before, is of correct length, and is not a result of frame shifting indels 181 

(see above), then it will replace the dominant sequence. Clustered sequences are removed from 182 

further clustering, and their depths are added to the depth of the consensus sequence to increase its 183 

coverage (solution of problem i and mitigates ii).  184 

When most of the artefacts have been clustered and only singletons remain to be checked, 185 

the clustering process finishes and the non-clustered sequences are discarded. These leftovers are 186 

usually contaminants, chimeras or sequences containing many errors that could not be classified 187 

into the major clusters. 188 

The full set of clustering parameters is summarized in Table 3, and a graphical schema of the 189 

process is shown in Figure 1B. Suggested solutions to problems associated with high error rates of 190 

high-throughput sequencing technologies using AmpliSAS clustering algorithm are summarized in 191 

Table 2. The AmpliCheck module can be used to explore the sources of possible artefacts and set 192 

appropriate clustering parameters.  193 

 194 

 Problem description AmpliSAS solution 

i. Real allele sequence is present at low frequency. 

Clustered artefact depths are added to the consensus sequence 

(putative real allele). ii. 
Artefact sequences are present at high 

frequencies. 

iii. 
Allele sequences are more similar to other alleles 

than to artefacts. 

Adjusting 'dominant frequency' or 'per amplicon frequency' clustering 

parameters helps to detect these alleles. 

Table 2. Genotyping classical problems and suggested solutions with AmpliSAS algorithm. 195 

 196 

Clustering parameter Description 

Substitution error rate (%) Sequences with higher rate of substitutions will be classified into new clusters 
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Clustering parameter Description 

(substitutions = error_rate x length). 

Indel error rate (%) 
Sequences with higher rate of non-homopolymer indels

1
 will be classified into new 

clusters (indels = error_rate x length). 

Clustering identity threshold (%) Sequences with lower sequence identity will be classified into new clusters. 

Minimum frequency respect to the dominant (%) 
Sequences within a cluster with same or higher frequency respect to the dominant 

will be classified as subdominants
2
 and form a new cluster. 

Minimum per amplicon frequency (%) 
Sequences with same or higher frequency within the amplicon will be classified as 

subdominants
2
 and form a new cluster. 

Cluster only exact length 
Only sequences that satisfy theoretical marker lengths can be dominant within a 

cluster. 

Cluster only in-frame 
Only sequences in-frame with marker theoretical lengths can be dominant within a 

cluster. 

Table 3. Description of AmpliSAS clustering parameters. 
1
Indels in homopolymer regions (3 or 

more consecutive identical nucleotides) are always clustered. 
2
Subdominant sequences must be 

correct length and free from frame shifting indels. 
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   197 

Figure 1. A. AmpliSAS workflow schema: i) sequence de-multiplexing, ii) clustering, iii) filtering 

and allele assignment. B. Simplified schema of AmpliSAS clustering algorithm decision tree. 

 

3. Sequence filtering 198 

The last step, sequence filtering (Figure 1), implements several user-defined criteria allowing 199 



13 

 

separation of artefacts from putative alleles. Its primary function is to remove PCR chimeras and 200 

artefactual non-clustered low depth sequences remaining after clustering. 201 

Depending on the genotyping method applied, the settings can be adjusted to yield either an 202 

Excel file with final genotypes, or an alternative output for use in downstream analyses. For 203 

example, the clustering output containing enriched sequence depths can be readily subjected to 204 

DOC analysis (Lighten et al. 2014a). AmpliSAS filtering parameters are summarized in Table 4. 205 

 206 

Filter parameter Description 

*Minimum sequence depth Sequences with lower amplicon coverage will be discarded. 

*Minimum per amplicon frequency (%) Sequences with lower amplicon frequency will be discarded. 

Maximum amplicon length deviation Sequences longer or shorter than the marker theoretical length±value will be discarded. 

Discard chimeras Sequences that are chimeras from other major sequences will be discarded. 

Discard frameshifts Sequences not in-frame with marker theoretical length will be discarded. 

Commonness (number of occurrences 

and minimum frequency)  

Sequences present in an equal or higher number of samples will be kept if they have a 

minimum frequency set by the user, even if they do not pass other filters.  

Table 4. Description of AmpliSAS filtering parameters. *Depths and frequencies of the unique 

sequences after clustering will be the sum of depths of all the cluster members. 

 207 

  
Pyrosequencing 

(455/Ion Torrent) 
Illumina 

C
lu

s
te

ri
n

g
 

1
Substitution error rate (%) 0.5 1 

1
Indel error rate (%) 1 0.001 

2
Minimum frequency respect to dominant (%) 

 or minimum per amplicon frequency (%) 
Optional Optional 

3
Cluster only exact length/in-frame YES Optional 

F
il
te

ri
n

g
 

4
Discard chimeras YES YES 

Table 5. Some suggested AmpliSAS parameters for different techniques. 
1
Clustering parameters are 
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based on technique-specific error profiles (see Table S2). 
2
This parameter should be set if the user 

expects very similar alleles, one of which could be wrongly clustered as an artefact of the other 

based on the specified error rates. 
3
454/Ion Torrent techniques have high sequence position-

dependent errors that make this parameter mandatory to avoid wrong length artefactual sequences 

that are more abundant than true ones. 
4
Removal of putative PCR chimeras is highly recommended 

irrespective of the technique used.  

 208 

 209 

AmpliSAS usage and availability 210 

The AmpliSAS main program is written in Perl, with the webserver interface in PHP and 211 

JavaScript, running on an Apache server. The online web server is available at: 212 

https://sites.google.com/site/evobiolab/software/amplisas. 213 

 214 

AmpliSAS functionality 215 

AmpliSAS requires as input two kinds of files/data: i) a file with raw reads in FASTA or FASTQ 216 

formats (compressed or not); ii) a file with data on primers, barcodes and amplicons in CSV 217 

(comma-separated values) format (example in Figure 2A). After analysis completion, results are 218 

downloadable in ZIP compressed format. The compressed file contains three folders ('allseqs', 219 

'clustered' and 'filtered'), an Excel file called 'results.xlsx', and text files with a copy of the input 220 

parameters and information about each analysis stage. Final results are saved in an Excel file in a 221 

matrix-like format: each predicted allele (TS) is shown in a single row with its sequence, MD5 222 

signature (unique and invariant identifier for each sequence), length, total depth, number of samples 223 

in which it is present, mean, maximum and mininum per amplicon frequency (PAF) values, 224 

followed by the number of reads corresponding to the sequence found in each sample (samples are 225 

represented in columns). An example genotyping results file is shown in Figure 2B. Each worksheet 226 

contains results for an individual marker. Output folders store intermediate results after each 227 

analysis step ('de-multiplexing', 'clustering' and 'filtering' respectively). FASTA sequence files are 228 

generated for individual amplicons, named with the marker followed by the sample name (e.g. 229 

https://sites.google.com/site/evobiolab/software/amplisas
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HLA_A3-HEK293.fasta for marker HLA_A3 in sample HEK293). An additional FASTA file is 230 

created with all the sequences for a single marker (e.g. HLA_A3.fasta). 231 

 232 

Figure 2. A. Example of AmpliSAS web server basic input form. B. Example of Excel file with 

genotyping results (samples are shown as columns and alleles in rows). 

 233 

 234 

Benchmarking MHC class I and II datasets 235 

We tested the performance of AmpliSAS against three published amplicon sequencing datasets. The 236 

first consists of human HLA-A and HLA-B exons 2 and 3 sequenced on Illumina by Bai et al. 237 

(2014). Here, we applied clustering criteria based on expected error rates typical for this technique 238 
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(Table 5) and simple filtering to remove small clusters (note that filtering parameters may vary 239 

between species and experiments and should be carefully verified). The purpose of this comparison 240 

was to check how well genotypes may be retrieved in the well-characterized human MHC system. 241 

The second was the threespined stickleback (Gasterosteus aculeatus) class II exon 2, sequenced 242 

on 454 and previously genotyped using STC clustering algorithm by Stutz & Bolnick (2014). The 243 

purpose of this benchmarking was to see if AmpliSAS one-step clustering gives similar results to 244 

those of the recursive clustering algorithm from Stutz & Bolnick (2014). The third was the guppy -245 

(Poecillia reticulata) DA exon 2, sequenced on both Illumina and PGM and genotyped by 246 

Herdegen et al. (2014) based on similarity and relative frequency of a variant compared to more 247 

common variants within the same amplicon, without clustering and after removal of indels. We 248 

replicated the genotyping protocol of Herdegen et al. but after AmpliSAS clustering (thus taking 249 

into account relative frequency of clusters rather than of unique variants) to see if and how it 250 

changed genotyping results.  251 

 252 

Human HLA class I genotyping 253 

The data set contains genomic sequences from exon 2 and exon 3 regions from class I HLA-A and 254 

HLA-B loci in five human cell lines sequenced with Illumina MiSeq paired-end 2×250 cycles (EBI 255 

accession number PRJEB4744) (Bai et al. 2014). Real allele sequences were assigned by Sanger 256 

sequencing in 2 independent laboratories. To make data compatible with AmpliSAS input format, 257 

barcode sequences were incorporated at primer ends for each sample file, and all samples have been 258 

merged into a single FASTA file. AmpliSAS was run with parameters adjusted for Illumina data for 259 

clustering (substitution error rate: 1%, indel error rate: 0.001%, Table 5). For filtering, we set min. 260 

per amplicon frequency as 10 %, and ‘discard chimeras’  as ‘yes’. The threshold of 10% was chosen 261 

for this exploratory analysis because most sequences above this threshold should be true variants 262 
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based on frequency distribution (Galan et al. 2010) of non-duplicated loci (human MHC-A and B 263 

heterozygous cells will have maximum two alleles).  264 

After de-multiplexing 123876 reads, 41302 were assigned to HLA-A exon 2, 54257 to HLA-265 

A exon 3, 22903 to HLA-B exon 2 and 5318 to HLA-B exon 3. However, for HLA-B exon 3 the 266 

most abundant unique sequence consisted of only 14 reads (compared to 3925, 7441 and 1244 267 

reads, respectively, for the other markers), likely because of the presence of many non-specific 268 

sequences within an amplicon. We therefore excluded this marker from further analysis. 269 

AmpliSAS HLA-A (exons 2 and 3) and HLA-B (exon 2) allele predictions fully matched 270 

real allele sequences obtained by Sanger sequencing. For exon 2 and 3 regions of HLA-A, the 5 real 271 

alleles were predicted with 100% accuracy without any false positive (Table 6). HLA-B exon 2 272 

region predictions also cover all alleles confirmed with Sanger sequencing, but AmpliSAS retrieves 273 

one additional sequence (Table 6). This sequence matches the HLA-E locus, which suggests that 274 

HLA-B exon 2 primers simultaneously amplified a gene of the same family and that our algorithm 275 

was accurate enough to retrieve its sequence. When we relaxed the filtering parameters (e.g. min. 276 

per amplicon frequency: 3%), we discovered more sequences from HLA-E, HLA-G, HLA-Cw1 and 277 

HLA-K alleles (data not shown), which are likely to be non-specific PCR products present among 278 

Illumina reads. Full genotyping results are shown in Appendix S1. 279 

 280 

Stickleback MHC class II genotyping 281 

The second data set is from Stutz & Bolnick (2014), and consists of genomic sequences of MHC 282 

class II loci, exon 2 region, from 301 samples of the non-model organism the threespine 283 

stickleback (Gasterosteus aculeatus), sequenced with 454 GS FLX Titanium technology. This data 284 

had previously been analysed with the Stepwise Threshold Clustering (STC) genotyping algorithm 285 

(Stutz & Bolnick 2014), and the original raw SFF file is available from NCBI (accession number 286 
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SRR1177032). The STC algorithm is accurate but slow, as it performs multiple clustering rounds 287 

with increasing similarity thresholds and repeats clustering 100 times in each round reordering 288 

sequences. Our aim was thus to assess whether the reduced computational intensity of AmpliSAS 289 

could produce clusters of comparable accuracy. 290 

Reads from the original STC article were given as input for AmpliSAS. For clustering, we 291 

used the following parameters: substitution error rate = 0.5%; indel error rate = 1%; minimum 292 

frequency respect to dominant = 22%; cluster only exact length = ‘yes’. For the filtering step, we set 293 

min. per amplicon frequency = 4.5%, discard chimeras = ‘yes’, and min. amplicon depth = 500. 294 

‘Minimum frequency respect to dominant’ and ‘min. per amplicon frequency’ parameters are 295 

equivalent to ‘dominance threshold’ and ‘size threshold’ parameters used by Stutz & Bolnick 296 

(2014). Following the original article, we used the commonness thresholds in AmliSAS to retain 297 

sequences with that had low frequencies after clustering (small clusters) but which were present in 298 

at least three other samples. However, we note that such inclusion of very low frequency sequences 299 

as TS is highly controversial, because they could derive from contaminants or from tag-swapping 300 

(Schnell et al. 2015). A total of 92 samples which passed the criterion of 500 sequences per 301 

amplicon were retained. The same dataset was analysed with the original STC software 302 

implemented in R (Stutz & Bolnick 2014). 303 

STC produced 530 clusters above the size threshold of 4.5%, while AmpliSAS formed 586 304 

clusters. Average per amplicon frequencies of clusters were 12.2% with STC and 14.0% with 305 

AmpliSAS. Of the 530 clusters identified by STC, 495 (93%) were also identified by AmpliSAS, 306 

sharing the same dominant sequences. Among the 35 clusters found only by STC, 14 were present 307 

among AmpliSAS small clusters (freq. < 4.5%) and the remaining 21 had a sequence with wrong 308 

length as dominant. These clusters are removed later by STC, but AmpliSAS retains them because a 309 

correct-length dominant sequence is present among cluster members. Ion Torrent and 454 310 
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technologies produce a high number of position specific errors (particularly in homopolymer 311 

regions), and sometimes some artefacts have higher depths than the true sequences (Gilles et al. 312 

2011). These cases would be incorrectly discarded by STC when removing clusters with wrong 313 

length dominant sequences, but retained by AmpliSAS. Among clusters found by AmpliSAS, but 314 

not by SCT, 54 were found among STC small clusters. The remaining 37 had dominant sequences 315 

of correct length and an average frequency of 11.9%, which suggests they were correctly assigned.  316 

Apart from clustering strategy, AmpliSAS differs from STC in its strategy of aligning 317 

amplicon sequences, which may account for some of the inconsistencies between STC and 318 

AmpliSAS clusterings. STC performs a multiple global alignment of all amplicon sequences using 319 

CLUSTALW to produce a matrix of distances, whereas AmpliSAS performs pairwise global 320 

alignments with the DNA version of the Needleman-Wunsch algorithm (Needleman & Wunsch 321 

1970; Larkin et al. 2007). Pairwise global alignments are more time-consuming but much more 322 

accurate. In the early design stages of AmpliSAS, we trialled the use of multiple alignment of the 323 

amplicon, but found that it returned too many alignment errors. The presence within an amplicon of 324 

divergent allele sequences accompanied by multiple insertions and deletions resulting from 325 

sequencing errors makes the multiple alignment error-prone, especially in large datasets.  326 

Both STC and AmpliSAS retrieved 163 putative alleles, 159 of which (98%) were identical. 327 

STC performed 667 allele assignments (total number of alleles assigned in all individuals; see 328 

definition of assignment in Table 1), and AmpliSAS 655, having 620 (93%) in common with SCT 329 

(Table 6). Analysing the differences in more detail, we found that allele assignments made by STC 330 

and not by AmpliSAS corresponded with allele sequences with very low depth, which are filtered 331 

by AmpliSAS because their clusters are too small (<1% frequency after clustering; Figure S3). 332 

Meanwhile, the few allele assignments made by AmpliSAS and not by STC correspond to clear true 333 

alleles. For example in sample 317, three clear alleles were dropped by STC (alleles 83, 124 and 334 
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882). These three alleles are present in other samples, have correct length, high frequencies, and are 335 

not chimeras (Figures S3 y S4A). Further examination showed that these three alleles, all of length 336 

213bp, are members of clusters where an artefactual 212bp sequence is the major one, with the 337 

length difference arising from a homopolymer indel (Figure S5). STC initially recognizes these 338 

212bp sequences as true alleles but later removes them because of their incorrect length. This is a 339 

clear case where a particular artefact is more abundant than the real sequence from which it derives. 340 

In contrast, AmpliSAS recognizes the correct length allele sequences as a 'dominant sequence' at the 341 

clustering stage and retains them in the final results (the clustering parameter 'cluster only exact 342 

length/in-frame' is crucial in this case; Figure S5). Full genotyping results are shown in Appendix 343 

S1. 344 

 345 

Guppy MHC class II genotyping 346 

To assess how clustering affects allele assignment based on Ion Torrent and Illumina sequencing, 347 

we used a dataset on the guppy alleles of MHC class II (exon 2) obtained by sequencing 13 348 

individuals on both platforms (Herdegen et al. 2014). Herdegen et al. (2014) assigned alleles 349 

without clustering, using the empirical threshold method (Radwan et al. 2012; Promerová et al. 350 

2013). Using a representative sample of sequences, they determined that the lower threshold, below 351 

which vast majority of variants could be explained as 1-2 bp substitution artefacts, was 3%, and the 352 

upper threshold, above which such artefacts are not found, was 12%. During genotyping, after 353 

removing sequences with indels, variants with frequencies less than the threshold of 3% were 354 

removed. The remaining variants were screened for chimeras, as well as 1-2 bp substitutions of 355 

more common variants on a case-by-case basis; such variants were removed, except when they 356 

constituted >12% of the reads within an amplicon (see Herdegen et al. 2014 for details).  357 

In our analysis, we used similar parameters for AmpliSAS as used in the original study 358 
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(<3% for removal, >12% for variants with 1-2 bp substitutions to form a separate cluster), but 359 

sequences less frequent than 12% which contained 1-2 bp substitutions compared to a more 360 

common variant within the same amplicon were clustered together with this variant, rather than 361 

removed. Likewise, variants with indels (1-2bp) were retained for clustering.  362 

For Illumina data, all 46 assignments made by Herdegen et al. (2014) were also called by 363 

AmpliSAS clustering, but one additional allele was called by AmpliSAS. For Ion Torrent, 43 of the 364 

44 assignments of Herdegen et al. (2014) were also called by AmpliSAS clustering, with AmpliSAS 365 

identifying three additional variants. The few detected differences in allele assignments were all due 366 

to changes in per amplicon frequencies of the reads forming a cluster compared to per amplicon 367 

frequencies of unclustered variants. These relatively minor changes (<6 %) caused some variants to 368 

shift over or under the thresholds that determined whether they were called as artefacts or TAs.  369 

The greater effect of AmpliSAS clustering on results from Ion Torrent allele assignment 370 

relative to Illumina was to be expected, as the former is prone to sequence-specific generation of 371 

indels, the removal of which may bias estimates of per-amplicon variant frequencies. While this had 372 

a very minor effect on genotyping results from the guppy dataset, the effect is likely to vary 373 

between systems according to the properties of the sequence sets analysed.  374 

 375 

Marker NGS technology 
Sample 

number 
Method 

Allele 

number 

Common 

alleles 

Total allele 

assignments 

Common 

assignments 

Human HLA-A exon 2 Illumina MiSeq 5 

Sanger 5 

5 

8 

8 

AmpliSAS 6 8 

Human HLA-A exon 3 Illumina MiSeq 5 

Sanger 5 

5 

8 

8 

AmpliSAS 5 8 

Human HLA-B exon 2 Illumina MiSeq 5 

Sanger 5 

5 

6 

6 

AmpliSAS 6 7 

Stickleback MHCII-  454 GS FLX Titanium 92 STC 163 159 667 620 
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AmpliSAS 163 655 

Guppy MHCII exon 2 Illumina MiSeq 13 

MPAF 19 

18 

46 

46 

AmpliSAS 18 47 

Guppy MHCII exon 2 Ion Torrent PGM 13 

MPAF 22 

21 

44 

43 

AmpliSAS 21 46 

Table 6: Statistics of AmpliSAS allele predictions and assignments compared to human HLA typing 

by Bai et al. (2014), stickleback MHC class IIb typing by Stutz & Bolnick (2014) and guppy MHC 

class II typing by Herdegen et al. (2014) 

 376 

Conclusion 377 

The utility of AS as a ground-breaking tool for characterisation of sequences of multi-gene families 378 

is hampered by high frequency of errors introduced by next generation sequencing, which requires 379 

complex bioinformatic post-processing of the data. This can now be facilitated by the AmpliSAS 380 

web server described here. It builds on the genotyping strategy introduced by the STC algorithm of 381 

Stutz & Bolnick (2014), and, like STC, allows clustering artefacts with the real sequences from 382 

which they come from. Artefact recognition is not always straightforward, and can be particularly 383 

problematic when using pyrosequencing (454) or ion semiconductor technologies (Ion Torrent) that 384 

produce high rates of non-random sequencing errors in homopolymer regions. In benchmarking 385 

against three published data sets that had utilised a range of NGS technologies and genotyping 386 

approaches, we have shown that the pairwise global sequence alignment clustering approach of 387 

AmpliSAS is an efficient and accurate tool for error annotation and artefact recognition, and after 388 

setting experiment-dependent parameters by the user, it is a useful tool for genotyping. By 389 

clustering artefacts with true variants, it increases the depth of allele sequences, making it easier to 390 

distinguish alleles from the remaining low frequency artefacts at later filtering stages.  391 

AmpliSAS clustering outputs can be adjusted by frequency, depth or other desired 392 

parameters to yield both putative genotypes and files for downstream analyses, such as DOC 393 

method (Lighten et al. 2014b). While different genotyping approaches should produce similar 394 
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results even in species with highly polygenic MHC, given sufficiently deep coverage and careful 395 

primer design (Biedrzycka et al. unpublished), comparison of protocols and optimising genotyping 396 

parameters is recommended for each study, based on replicated genotyping of a subset of 397 

individuals. For example, while in guppies sequences with per amplicon frequency < 2% appeared 398 

to be mostly artefacts (Herdegen et al. 2014; Lighten et al. 2014b), in sedge warbler (Acrocephalus 399 

schoenbaenus), characterised by much higher number of co-amplifying alleles (up to 51) and 400 

sequenced at much higher depth, all sequences >1% could be classified as TA (Biedrzycka et al. 401 

unpublished).  402 

Our benchmarking has shown that AmpliSAS reliably replicates clustering and genotyping 403 

results obtained in earlier studies across different NGS platforms. Due to its accuracy, versatility 404 

and user-friendly interface, AmpliSAS, in conjunction with AmpliCHECK, would facilitate 405 

optimisation of genotyping parameters and the choice of optimal genotyping method. We believe it 406 

will prove to be a useful tool for many applications involving amplicon sequencing. 407 

 408 

Data Accessibility 409 

 410 

 411 

 412 

Supporting information 413 

Additional Supporting Information may be found in the online version of this article: 414 

Appendix S1. Excel file with AmpliSAS genotyping assignments for the benchmarking datasets 415 

(human, stickleback and guppie). Original results are also included for comparison. 416 

Table S1. Summary of up to date multilocus genotyping methods for amplicon targeted sequencing. 417 

Table S2. Error rate comparison among several NGS technologies and sources. 418 

Figure S1. AmpliSAS extended workflow schema. 419 

Figure S2. BLASTN alignments of a HLA real allele and a PCR sub-product to human genome. 420 
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Figure S3. Examples of genotyping discrepancies between AmpliSAS and STC methods in 421 

stickleback MHC class II. 422 

Figure S4. Alignment examples of AmpliSAS predicted allele sequences for stickleback MHC class 423 

II. 424 

Figure S5. AmpliSAS clusters for alleles 83, 124 and 882 (213bp) in stickleback sample 317. 425 
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